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Analysis of the two-point velocity correlations
in turbulent boundary layer flows

By M. Oberlack

1. Motivation and objectives

Two-point Rapid Distortion Theory (RDT) has become an important tool in the

theory of homogeneous turbulence. Modelers try to implement appropriate results
from RDT in their statistical turbulence models, for example in the structure based

model developed by Kassinos and Reynolds (1994).

On the other hand, in non-homogeneous equilibrium flows the logarithmic law

is one of the cornerstones in statistical turbulence theory. Experimentalists have

found the log-law in a broad variety of different turbulent wall shear flows, and
statistical models have been made to be consistent with the log-law.

The logarithmic law was first derived by von K£rm£n (1930a, 1930b) using di-
mensional arguments. Later Millikan (1939) derived the law-of-the-wall more for-

mally using the so called "velocity defect law", also first introduced by yon K£rmhn

(1930b). Even though the derivation was much more comprehensive from a phys-
ical point of view, the velocity defect law is essentially an empirical observation.

A first derivation of the law-of-the-wall using asymptotic methods in the Navier-

Stokes equations was given by Mellor (1972). Mellor needed the viscous sub-layer

to obtain the log-region, and his scaling of the inertial range in the log-region is in

error because it does not give the one-point limit of production equals dissipation.

The general objective of the present work is to explore the use of RDT in analysis

of the two-point statistics of the log-layer. RDT is applicable only to unsteady

flows where the non-linear turbulence-turbulence interaction can be neglected in
comparison to linear turbulence-mean interactions. Here we propose to use RDT

to examine the structure of the large energy-containing scales and their interaction
with the mean flow in the log-region.

The contents of the work are twofold: First, two-point analysis methods will

be used to derive the law-of-the-wall for the special ease of zero mean pressure
gradient. The basic assumptions needed are one-dimensionality in the mean flow
and homogeneity of the fluctuations. It will be shown that a formal solution of the

two-point correlation equation can be obtained as a power series in the yon K£rm£n
constant, known to be on the order of 0.4.

In the second part, a detailed analysis of the two-point correlation function in the

log-layer will be given. The fundamental set of equations and a functional relation

for the two-point correlation function will be derived. An asymptotic expansion

procedure will be used in the log-layer to match Kolmogorov's universal range and

the one-point correlations to the inviscid outer region valid for large correlation
distances.
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2. Governing equations of the two-point velocity correlation function

Using the standard Reynolds decomposition Ui = fii + ui and P =/_ + p, the

Reynolds averaged Navier Stokes (RANS) equations read

0ffi _ 1 O_ +v (1)

and the fluctuation equation, later on referred to as N-equation, is

0muk 1 0p._,(z) = + _'_-ff_zk + u_ Ozk Ozk Ozk p Oz_

02Ui

t_-_x _ =0 . (2)

The corresponding continuity equations are

Ofik 0 and Üuk O. (3)
Ozk Ozk

The five two-point correlation tensor functions that appear in the two-point cor-

relation equation (5), further below, are defined as

R_j(=,,.; t) = u,(=,t),,,(-('Lt) ,

_-j'(Z, T; t) : p(X, t) IZj(X (1) , 1_) ,

_-j-_(x,,; t) = uj(_, t) p(z"_, t) ,

R(_,(z, r; t) = u_(z, t) uk(z, t) ui(zo), t) ,

Ri(jk)(z, r; t) = ui(z, t) uj(z(D, t) uk(zO), t) . (4)

All tensors in (4) are functions of the physical and the correlation space coordinates
z and r = z 0) - z respectively. The double two-point correlation Rij, later on

simply referred to as two-point correlation, converges to the Reynolds stress tensor

uiuj in the limit of zero separation r.
The well known two-point correlation equation (Rotta (1972)) can be written as

DRij 0fii(z,t)

Dt
0aj(z, t) I

Ix+r - [a_(x +r,t) - ak(z,t)] OR_Jark

02 Rij ]

= -Rkj Ozk Rik

P I Oxi Ori Orj ] lOxkOxk ÜxkOrk

OR_k)i + 0 [R(_)j - n_¢i_)] (5)
0_k

For both two-point velocity-pressure correlations, _ and _ a Poisson equation

can be derived. The divergence O/Üxi - O/c_ri of equation (5) leads to a Poisson

equation for _--_,
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FIGURE l. Sketch of the coordinate system and the mean velocity field

[ a_7 a_p-_- a_p-a7] = _2aa,(_,,t)[ae,j

[ 02R(k/)./ 02R(koj 02R(kt)j ]
2a_kar-_---_-+ ar_artJ (6)

and the divergence 0/Or_ leads to the corresponding Poisson equation for _-_,

1 02u--Tp = O_k(=,t) I OR. 02R_(k_)
p OrkOrk 2 Ozt ,=+r Ork OrkOrt (7)

where the vertical line means that the derivative is taken with respect to _ but will

be evaluated at z + r. All of the dependent vaziables in (5)-(7) have to satisfy the

continuity conditions

ORij OR 0 ORij

Oz_ Ori =0' Orj =0 (8)

P°_-7= 0 _d _ _a-ao'P= 0. (9)
arj Oz i Or i

For the analysis of the self-similar, two-point correlation equation further be-

low, two identities are important. They can easily be derived from a geometrical

consideration by interchanging the two points z and z (1) = z + r

Rij(z,r)=Rji(a+r,-r), _-Tfi(a,r)=_ff_(z+r,-r) . (10)

The latter identities are the key elements for the derivation of some boundary con-

ditions and for the deeper understanding of the self-similar two-point correlations.

There exists a similar identity for the triple correlation which will not be used here.
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3. The log-law - a self-similar form of the two-point correlation equation

A sketch of the coordinate system and the mean velocity field adopted in the

proceeding paper is given in Fig. 1. Within this subsection it will be shown that

the logarithmic part of the law-of-the-wall mean velocity profile can be derived

from the two-point correlation equation and hence from the Navier-Stokes equation

if there exists a regime where the following assumptions hold:

• the mean velocity is parallel to the wall;

• the statistics in that domain are independent of viscosity and time;

• the Reynolds number is high;

• no mean pressure acts on the flow field.

The last assumption can be eliminated, but in this approach it will be focused on

the zero pressure gradient case. Beside the above assumptions no other conditions

are needed in order to determine the log-law mean velocity profile and the self-

similarity of the correlation functions.

Inferring the above assumption in the Reynolds averaged Navier-Stokes equations

(1), it is easy to confirm that the gradient of the Reynolds stress tensor on the right

hand side is the only remaining term. Integrated one time we obtain that uiuj is

independent of x. However, this is not necessarily true for the two-point correlation

tensor Rij. It could depend on x if the dependence vanishes in the zero separation

limit. This can only be achieved by having the following dependence on a new

variable

'_ = rg(z) (11)

where g(_) has to be determined later and no other hidden dependence on z can be
in the correlation functions. Of course, the latter definition of _ can be generalized

to different unknown scaling functions for every component of r, but from equation

(5) it can be verified that only a single scaling function exists. With the above given

assumptions, defining z = _ and using the transformation rules

c3 0 1 Og _ 0 0 C3 (12)

the Ro-equation (5) reduces to

0 = -R2j _il d'_l(X2)dx2 Ri2 _jl dul(X2)dx2 _2+,'2

ORij

- (x2 + r2) - 9 0el

p 9 + 9 j

. O [R(ik)j Ri(jk)]10g cgR(ik)j + g
g O_k rt O_t

(13)
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As mentioned above, there is no hidden z dependence in the correlation function

and therefore all _ derivatives coming from (12a) have been omitted. Obviously,

equation (13) can only have a non-trivial solution, and thus be independent of z, if

all the coefficients have the same functional dependence on z. Hence, the following

set of differential equations determine the ul and g dependence on z

10g d_l(x2)

g Oxi "_ g for i = 1,2,3 , dz2 "_ g (14)

and

i dul(X2) ] _---.fl(_)_f2(x) , _21(x2-.]-r2)-_l(X2)=f3(T")_f4(x). (15)

g dx2 ]z+r

are additional consistency conditions for fil and g. The last equation in (14) de-

termines g to depend only on x2. Hence, the equations (14) have two independent

sets of solutions given by

and

1 c ( 1) c()

g(X2) "_ C_I)(x2 -- C_ 1)) ' Ul(X2) = C2 -_1) ln(x2 --c_l)) + a ) (16)

, = c(2)c(2)x c (2)= 1 + (17)

where the c_P)'s are integration constants or proportionality factors. Obviously, only

the first set of equations correspond to a boundary layer flow because the solutions

(17) define homogeneous shear turbulence which contradicts the assumption to be

independent of time. Both equations (15) require c_1) = 0 and c_ 1) carl be absorbed

in the correlation functions. In common notation we finally obtain

and

_i = Ur_il [l ln(x2) h-C] (18)

where u_ is defined as

T
= -- (19)

X2

;xl
=V (20)

Inserting (18) and (19) into equation (13) and multiplying by the yon Khrmgm

constant g the final form of the Rij-equation results:
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where

1 ln(1 + _2) OR,*_
0 = -R_j _il - R_2 _jl 1 + ÷2 0_1

+ - [oi2r,-g_--k +p a_ a_i J

(21)

Ri(j____k) pu'--_ uip
R*j - Rij R(i_)j R,*.(j_)- _-7"= _ and h-'_* - -' , '

(22)

The procedure described above can be extended to the three-point triple-corre-

lation equation and any higher order correlation equation if an additional spatial

point is introduced for each additional tensor order. As a result it is easy to verify

that the whole set of equations define an infinite set of linear tensor equations but

which are far too complex to be solved in general. Nevertheless, it is worthwhile to

analyze some features of the solution.

In principle this infinite set of equations could be solved by the following pro-

cedure. Beginning with the two-point correlation equation, the triple correlation

can be considered as an inhomogeneous part of the R 0 equation. Once the ho-

mogeneous solution is obtained, the inhomogeneous solution can be computed by

standard methods. In the next step, the triple-correlation equation has to be tack-

led and its solution will be substituted in the solution for Rij, and so forth for

higher correlations. In each equation the yon K£rm£n constant n only appears as

a factor of the highest order tensor and hence the final solution for Rij is a power

series in

oo

a;, E m (23)= aii t¢ .
rn_O

a(0)
ij represents the solution of the two-point correlation equation after neglecting

the triple-correlations and all higher order terms.

The structure of the formal solution in equation (23) admits the hope that a

truncated series may provide some insight in the log-law statistics. Hence, in the

following the triple-correlations will be neglected. Using the similarity variable in

the poisson and the continuity equations, the puj equation (6) becomes

. _ a2_-_7• a2_7_____* 02_7 * ,,_ 0-_7" pO-F_i" 2paR_
rkrt _ + Orkrt + 2'_k _ + + 2 , (24)orkr2 zrk_ 0_2 _ Of 1

the u-_ equation (7) becomes
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02u--7",'_ 2p 1 OR_2

o_,:k ,_ 1 +r2 0Yl ' (25)

and the continuity equations (8) and (9) yield

. OR;, OR;3 OR;,
r__ + 0_---7= 0, 0_---5-=0, (26)

PO-P-_'J*--O and _ uO-u-_2p* uO-5_ip*
O?j rk _ + O(i -0 . (27)

The identities (10) can also be transformed in a similar manner. Introducing the

transformation (19) into the equation (10a), we obtain the relation Rij(x2, x2_) =
Rj_(x2(1 + _2),-x2_). Because it was previously assumed that all two-point corre-

lation functions are solely functions of _, only the ratio of the first and the second

parameter can appear in Rij. This argumentation can be extended to the pressure
velocity correlation. Thus, we finally obtain

and

(28)

_--_*(_)=_<" _ (29)

The latter identity also holds if u--]-:*and _ are interchanged.
These two relations give valuable insight into the structure of the solution. Rela-

tion (28) connects different _ domains to each other and provides boundary condi-
tions in the 7=2direction.

One interesting feature of (28) is that it can be considered as a functional equation

for each trace element. It is easy to verify that one solution, but probably not the

most general solution to equation (28), is given by the following form

* " , : (30)R[_.t](r ) = F_ ln(1 + ':2 _2' r2

where R_.t.t] is one of the three trace elements of R_j.

In addition if the solution for any off-diagonal R_j element (i _ j) is known, (28)

provides the solution for the R_i. A similar feature for _ and pui is given by
relation (29).

If boundary conditions have to be satisfied in infinity, all correlation functions

decay to zero. Therefore, any solution of equations (21) and (24)-(27) have to obey
the boundary conditions

Ri_(_k -+ ±_) = _-7"(,_ _ ±oo) = u--_-*(_k _ ±oo) ----0 for k -- 1,3 (31)
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FIGURE 2. Sketch of the boundary condition in the x2-r2 plane.

and

oo) = = --, oo) = 0. (32)

To better understand the boundary conditions in the wall-normal direction, a

sketch of the x2-r2 plane is given in Fig. 2. Picking any value for z2, the negative

part of r2 can not be smaller than x2 and hence one bound is on the line x2 = -r2.
The bound for the physical coordinate is at x2 = 0. Using the definition of the

scaled non-dimensional coordinate (19), it is clear from Fig. 2 that r2 represents the

inverse of the slope given by any straight line through the origin ranging between
the two latter bounds. Hence, the domain for r2 is restricted to -1 < r2 < oo.

Using (28) and (29) together with (32) one obtains

Rij( 2 = -1) = 0 (33)

and

P--_*(_2 = -1)=_-_*(_2 = -1)--0 . (34)

Obviously, the boundary conditions are allhomogeneous and one may expect the

solution to be zero. In section (5) it will be discussed why the equations might have

a non-trivial solution, but a rigorous proof is still outstanding. In the next section

an integral relation coming from the one-point equations will be derived, which

closes the missing information regarding the scaling of the two-point correlations.

4. Kolmogorov's universal range and one-point correlations

The self-similarity of the correlation functions introduced in section 3 is only valid

in the limit of large Reynolds number, based on the wall distance and the friction

velocity

Re,. = u,z2 (35)
V
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This is also the definition of y+. From experiments it is known that the log region

starts at about y+ = 40 and extends to y+ = 0.2U6/v.

The analysis in the previous chapters is inviscid, and hence is not a regular

expansion in Re_. It is not applicable for small correlation distances, as will be

explained in some detail now. An inner viscous layer in correlation space has to

be introduced in order to meet the requirement that viscosity is important for the

dissipation tensor eii in the one-point limit.

Comparing the two-point correlation equation (5) in its most general form to the

inviscid version in the log-layer (21), no viscous term has been retained. In contrast

to that, the Reynolds stress transport equation in the log-layer

- [u---/_6jl + u-_-_6il] u_ + ¢i1 -eij = 0 (36)
/_x 2

contains the viscosity v in the dissipation tensor, defined by

_ Oui Ou.i

eij = 2v0--_- k _ = 2v r=01im

and the pressure-strain tensor is defined by

0 Rij 0 2 Rij ]
OXkCgrk OrkOrk ] (37)

pr a,, l r
¢,i = _ L0x,+ 0x, J = lira t Or, + _ Ors j (3S)

= 2 determines the scalarThe contraction of equation (36) together with ulu2 -u_
dissipation

3
Ckk U r

e- 2 _x2 (39)

As mentioned above we find from equation (36) that the asymptotic arguments
we have used so far are not valid for correlation distances on the order of the

Kolmogorov length scale l_. The Kolmogorov length and velocity scale are given by

t

1,7 = = x2Re_ ;_¼ and u,_ = = u_.Re_. _1¢-¼ (40)

The only scaling of the independent variables with which the correct balance can

be achieved in the two-point correlation equation is given by

T a

= --l_ = Re_n-¼ x2--r (41)

In line of Kolmogorov's arguments, the scaling of the dependent variables must be

[ ,0, ( ,)]2 Bi j (_)+0 Re7 _

R(ik) j = u. D(ik)j(_) + 0 Re-_; ,
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a [D(°)[_:_+O(ReT¼)]Ri(jk) = u_ [ i(jk)_'.J

(42)

Putting (41) and (42) into (5), (6) and (7) the leading order terms in each equation

are given by

-,_ilu--_-_-* - 5ilu--7-_* +
OM_o) ON} °)

(o ,.._D(°) OD (o)
2 02Bij ) (ik)j ,(jk) (43)

0_, 0_j _ + 0_k 0_ '

and

02 M_ o) 02 D (°)_ (kt)j

0_k0_k 0_k06
(44)

2 ,(o) ,_2D(°)
0 /_i _ " i(kt) (45)
O_0_k O_0_i

In order to obtain a uniform solution there must an overlapping region that

matches the inner and the outer solution together. From (42a) we see that the limit

---, _ in the inner layer of the two-point correlation converges to the Reynolds
stress tensor and the same must be valid for a solution of the equations (21) and

(24)-(29) in the outer layer for the limit _ --* 0. Using the same limits for both

regions in the triple- and the pressure-velocity correlations, they both drop to zero

as they should do. As a result, the matching between the inertial subrange and

obviously specifies the outer solution R_i at r = 0 to be uiuj, but the actual
numerical value of Reynolds stress tensor is still unknown.

Note, that the equation corresponding to (43) in Mellor's paper (1972) (his equa-

tion (59)) has a serious error. It does not have the production terms which, of

course, are responsible for the energy transfer rate.
As mentioned above the inner layer does not determine the absolute value of

the Reynolds stress tensor because the triple correlations can not be neglected in

(43)-(45). Thus an additional assumption is needed to determine the values of u--7_.

In Kolmogorov's original hypotheses it was suggested that in the limit of large

Reynolds number the dissipation will be isotropic. Saddoughi's (1994) very high
Reynolds number experiment of a turbulent boundary layer in a wind tunnel sup-

ports this idea of isotropy. Hence, we take

2

_ij = 5_ij_ • (46)

Using this, the three trace elements of _ij can be obtained from the Reynolds Stress

tensor equation which in non-dimensional form can be written as
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- + + % - 2 (47)-_tSii = O with ¢I'*j =¢ij _x2

or in component notation

4 2 2

(I:)_l : --3 ' (I)_2 -_- 5 ' (I)_3 : 5 " (48)

Note, that the latter result for the pressure-strain correlation holds no matter what

is assumed for the triple-correlations. As a result, all high Reynolds number second-

moment closure models should be consistent with this result. In most second mo-

ment models this could only be ensured by adding wall reflection terms to the

pressure-strain model.

Because the system (21) and (24)-(29) has homogeneous boundary conditions

on all boundaries, there is nothing that specifies the amplitude of R_j or the value

of u-7-U_* as mentioned above. In fact, this would also be true if higher correlation
functions would have been taken into account. The definition (38) together with

the result (48) can be used to calculate the values for the Reynolds stress tensor.

The term on the right-hand side of (38) can be rewritten as an integral of the

two-point correlation and some boundary integrals. This was necessary because the

limit r _ 0 has to be evaluated within the dissipation range where not enough is

known about the two-point velocity-pressure correlation. It can be found that the

dissipation range, which is of the order of l,, makes a higher order contribution to

the above mentioned integral in the limit of large Reynolds number and thus can

be neglected. After neglecting the triple-correlations we find

[ * 02R*. \d2* = ---_ 1 + r2 _oj2_ + urlorl /
fz

02R7 ] dV( )+ o j0 x + (i j) (49)

where (i _ j) abbreviates the addition of the previous term with indices inter-

changed. No boundary integral has to be kept due to the homogeneous boundary

conditions for all variables. Once a solution to the equations (21) and (24)-(27) are

computed the scaling of the two-point correlations can be calculated by equating

(48) and (49). Using this, the value for u--7-_* can be taken from R_) at r = 0 as

has been proven by the matching between the Kolmogorov universal range and the

outer inviscid solution.

5. Future plans

There are basically two outstanding problems within the whole approach of RDT

in the log-layer. The first one is the fact that it has to be proven that the system

(21), (24)-(29) has a non-zero solution even though all boundary conditions are

homogeneous. A strong hint towards this character of the equation is gained by

the analysis of the discretised set of equations which, of course, is linear. To see

why the equations may have a non-zero solution, a result from linear algebra may
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be recalled. If in a linear system of the form Ax = 0 the matrix A has the rank

and ( < n where n is the number of equations, then the system has nontrivial

solutions. In this particular case considering the discretised equations (21), (24)-

(27), A is a quadratic matrix and its rank can only be smaller than n if there is

some redundancy in the equations. In fact, this redundancy is due to the identities

(28) and (29). Even though the structure of the discretised system provides some

information, the proof of a corresponding feature in the differential equations is still

outstanding. Once the previous problem is solved, a numerical algorithm has to be

coded to solve the discretised equations (21) and (24)-(29) because it is very unlikely

that an analytical solution can be found. In the next step of post-processing the

numerical results, the ability of the asymptotic limits used in the RDT of the log-

layer has to be revised and if necessary enhanced by including higher correlations

in the analysis. Finally, the results of the theory will be compared with DNS data

from the turbulent channel flow (Kim et al. 1987).
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